
LED Blink

What Will You Learn?

Learn to wire a circuit, upload code to a microcontroller to make an LED Blink, and modify that code to change
how it blinks.

Why Should You Learn This?

Blink is one of Arduino’s basic example programs. It is a great way to begin to understand the programming
language. You should complete the “LED circuit” activity before beginning to understand how an LED circuit
works. During this activity, you will upload an LED Blink example program and then watch what happens
when you change the code.

Here’s What You’ll Need:

Arduino Microcontroller BreadboardLED

Notice that one of the wires
of the LED is slightly longer
than the other, the long leg
is the positive side and the
short leg is the negative side.
This will be important when
you plug in your LED.

Red Wire

Black Wire

Resistor

Use a range of 100 – 400
ohms

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may
be contained in this document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

A to B USB Cable

You will power the
Arduino from a
computer through
the USB cord.

Safety First!

Never allow the red and black wires to touch together while they are connected to a powered microcontroller,
as that creates a short circuit. A short circuit can potentially cause the wires and/or the Arduino board to get
hot enough to burn the skin. In addition, in the event of a short circuit the Arduino board can potentially catch
on fire.

Let’s Get Connected!

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may
be contained in this document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

1. Start by connecting the black wire
from GND to the negative rail of the
breadboard.

3. Let’s add the resistor. Use it to
connect row 16 (where the red wire is)
to any other row on the breadboard
(shown using row 12).

2. Next, connect the red wire from pin 13
to any row on the breadboard (shown
using row 16).

4. Lastly, place the LED. The long
leg (positive) will go in the row with
the resistor (row 12) and the short leg
(negative) will go in the negative rail.

Time to Upload Code!

You can think of sending code to the microcontroller like sending a text message. You open a texting app
(in this case you’ll use the Arduino software), choose someone to send the message to (select the correct
communication portal, or COM#, for the Arduino board), compose a message (write some code), then hit send
(upload the program). This activity will walk you through each of these steps.

1. First, you need to open the app that you’re going to use to send out your “text.” We’ll use the Arduino
programming software on our computer.

Note that the image above uses Windows to run Arduino. Other operating systems may have instructions that
look slightly different, but the concept is the same.

2. Next, you need to identify in your phone who you are texting. In the program, this means selecting the
correct communication port by going to Tools -> Port and then selecting the COM# with “(Arduino Uno)” or
“(Arduino/Genuino Uno)” next to it (if there are 2, select the port with the higher number).

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may
be contained in this document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

3. Next, you need to type in your message. In this activity, you are going to use one of Arduino’s built in example
programs for your message. Open the “Blink” example code by going to File -> Examples -> 1. Basics -> Blink.

4. Finally, you need to “send” your text message. In this programming language, this is called “uploading,” it is
done by clicking the arrow button in the top left corner of your screen. Once this code uploads, your LED should
begin to blink.

5. Let’s look through each section of the code so that you understand what is happening. The first part of the
program is grey, which means that it is made up of “comments.” These comments do not get uploaded to the
microcontroller, they are just for humans to read. You can use them when you want to share your code with
someone else or if you want to remember what certain parts of the code do.

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may
be contained in this document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

6. The first bit of real code is “void setup(){”. This sets up your board and the code we write within the
setup function, lets it know what pins you are using and how each pin will act. There is one line of code in this
setup, “pinMode(13, OUTPUT);”, which programs the microcontroller to set pin 13 to output mode. Output
mode means it can send power. As a result, your LED will be plugged into pin 13.

7. The next section of this code is “void loop(){. This is the action part of the code and this section will
repeat forever until you disconnect the power, reset the board, or if you coded for it to leave the loop. There are
4 lines of code in this loop and they will repeat, line 1, line 2, line 3, line 4, line 1, line 2, line 3, line 4, line 1, etc.

a. The first line of code, “digitalWrite(13, HIGH);” sets pin 13 to a high voltage and turns the LED on.
b. The next line, “delay(1000);” programs the microcontroller to wait for 1000 milliseconds (or 1 second)

before reading the next line of code. Since you haven’t set the LED to off yet, the LED will simply stay on.
c. The next line of code, “digitalWrite(13, LOW);” will set pin 13 to low voltage, making the LED turn

off.
d. Lastly, “delay(1000);” programs the microcontroller to wait for 1 second again before reading the next

line of code. So, the LED turns on, waits for 1 second, then turns off and waits for 1 second. This makes
the light blink!

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may
be contained in this document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

8. Now that you have a basic understanding of how this code works, how could you change the code to make
the light blink faster?

You can change both delays to a smaller value to make the light blink faster. Don’t forget to upload once you
have changed the code!

Notice that the comments still read “wait for a second,” but remember comments don’t affect the code. It is
good practice to have comments reflect the code, so you may choose to modify them to be correct.

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may
be contained in this document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may
be contained in this document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

Tips for Success!

• My light is not blinking: Be sure that all your wires are plugged into the right places on the breadboard
and microcontroller (check the diagram in step 4 of “Let’s Get Connected!”). Pin 13 can be tricky to find
sometimes and you may be one off to the left or to the right. Try moving the red wire around to find 13.

• Double check to see if your LED is plugged in the right way. The LED won’t work if it’s plugged in
backwards, so try flipping the direction.

• If you’re sure the wire is in pin 13 and it still is not blinking, make sure you uploaded your code to your
Arduino. At the bottom of the screen it should read “done uploading.” If not, try uploading again.

• When I upload, I get an error. Make sure you are connected to the correct Port and that the code is the
original example.

Are You Ready for Some Challenges?

1. Did you know that all the lights in the room you’re currently in are blinking? Your eyes just aren’t fast
enough to see the blinking. This is how flat screen TV’s and smart phone screens work, but don’t believe
everything you read! Prove to yourself that you can make the LED blink so fast that you can’t see it blink
anymore. Make sure both delays in your program are the same for this challenge.

2. Now that you know that a blinking light could appear solid, try to find the threshold value of visible blinking.
In other words, try to find the largest value that you can put into both delays and you can’t see the light
blink, but if you add 1 to that value you would see it flicker. Hint: it’s greater than 1 and less than 50.

3. Make your LED Blink on and off for random amounts of time for the delay. “Random” is a function in
Arduino that will select a random value within a given range. So if you write “random(0,10)” inside
the parentheses of “delay()”, it will pick a random number between 0 and 10. For this challenge, it is
recommended to use a range of 20 to 1000, but you can always try different values as well!

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may
be contained in this document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

Qualcomm and Thinkabit Lab are trademarks or registered trademarks of Qualcomm Incorporated.

Challenge Solutions

1. Any value less than 10 will work for this challenge. For example:

2. The threshold is usually at 10 (like the example above), sometimes it is 9, 11, or 12 because there is slight
variability in either the color of the light, the value of the resistor, or maybe the human.

3. The random function goes inside of the delay.

