
Programming a Servo

What Will You Learn?

Learn how to connect a Servo motor to the microcontroller and write code to control the motor’s movement.

Why Should You Learn This?

If you have gone through the LED Circuit and LED Blink exercises, you are ready to move on to programming
a Servo. A Servo is a motor that can be programmed to move. There are 2 different types of Servos that are
typically used, a full rotation (or continuous) Servo and a standard (or position based) Servo. The same code
works for both types of Servos. If you don’t know which kind you have, you’ll find out once you connect it to the
microcontroller. If it spins all the way around, it is a full rotation Servo. If it only moves to a certain position, it is
a standard Servo.

Here’s What You’ll Need:

Arduino Microcontroller Red Wire

Black Wire

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may
be contained in this document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

Servo

White Wire

Safety First!

Never allow the red and black wires to touch together while they are connected to a powered microcontroller
board, as that creates a short circuit. A short circuit can potentially cause the wires and/or the microcontroller
to get hot enough to burn the skin. In addition, in the event of a short circuit the microcontroller can potentially
catch on fire.

Time to Write Some Code!

1. Start by opening a new sketch and erasing everything that is already there. Don’t forget to connect your
microcontroller to the correct port, so that you can upload your program. (See the “Troubleshooting” document
if you are having problems connecting.)

Let’s Get Connected!

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may
be contained in this document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

Servos are controlled using three wires: a positive
wire (usually red), a negative wire (usually black),
and a signal wire (usually yellow or white). First,
connect the Servo’s positive wire (red) to the Vin pin
on the microcontroller. If you need to use an extra
wire to do this, it is smart to use a red wire, so that
it matches the colors of the wires coming off the
Servo. Next, connect the Servo’s ground wire (black)
to the GND pin on the microcontroller. Finally,
connect the Servo’s signal wire (yellow or white) to
pin 9 on the microcontroller (we will be using pin 9 in
our code).

2. Writing a program that will generate the signals
that you need to control a Servo is a bit complicated.
Thankfully, you don’t have to write this program yourself.
You can use a package of pre-programmed code, called a
“library”, which comes with the Arduino software. Using the
Servo.h library will make it much easier for you to control
your Servo.

To use the library, go to Sketch -> Include Library then click
on “Servo”. After you click on the library, it will add a line of
code that should look like this: “#include <Servo.h>”.
This line of code tells the computer to include the Servo
library in our project.

3. Use your arrow key to move to the next line in your program and then type “Servo myservo;”. This names
the Servo in the code called “myservo”.

4. Next, press Enter twice to move your cursor down, then type in “void setup(){ “ and press enter once
more. When you do this, a closed bracket “}” should appear at the bottom of the code. These brackets are like
hamburger buns, you can decide what you want to put on your burger, but you always need a top and bottom
bun. Anything you type between the open bracket and the closed bracket will be part of the setup.

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may
be contained in this document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

5. You need to use one pin on the Arduino microcontroller to send signals to the Servo. You can tell the
microcontroller to use pin 9 (the pin you used in “Let’s Get Connected”) by typing “myservo.attach(9);”.
Note that you use pin 9 because it has the ~ symbol next to it, which means that it generates the PWM type of
signal (the type of signal needed for the Servo).

6. Use your arrow key to move to the next line in your program, and then press Enter twice. You want the closed
bracket to remain where it is, but you want to move your cursor down the page.

7. Next, you will code the action phase of your servo. First, type in the line “void loop(){“. You will see that,
once again, when you have typed this line of code in and pressed enter, the program will automatically make a
closed bracket at the bottom of the page.

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may
be contained in this document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

8. The last part of the code will control the Servo’s motion. There are 4 lines of code that will control your Servo.

a. The first line, “myservo.write(0);” causes the continuous Servo to spin fast in one direction (typically
to the left, but some Servos are different) and causes the standard Servo to go to 0 degrees.

b. The second line, “delay(2000);” causes the microcontroller to wait before reading the next line of
code, so the continuous Servo would keep spinning in one direction for 2000 milliseconds (2 seconds) and
the standard Servo would stay at 0 degrees for 2000 milliseconds (2 seconds).

c. The third line, “myservo.write(180);” causes the continuous Servo to spin fast in the opposite
direction and causes the standard Servo to go to 180 degrees.

d. The last line, “delay(2000);” causes the mircrocontroller to wait for 2000 milliseconds (2 seconds)
before reading the next line of code, so the continuous Servo would keep spinning for 2000 milliseconds (2
seconds) and the standard Servo would stay at 180 degrees for 2000 milliseconds (2 seconds). The
value that you put in “myservo.write();” controls the Servo’s motion, and the “delay();” tells the
microcontroller how long to wait before reading another line of code. This gives the Servo time to move.

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may
be contained in this document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

9. Once all your code is written, upload the code to your Arduino microcontroller. If you get any errors, see the
“Tips for Success!” section at the bottom of this document or the “Troubleshooting” guide.

Your Servo should now be moving. Congratulations! If you have multiple Servos, test each one and see how
the same code affects the different Servos.

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may
be contained in this document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

Tips for Success!

• If you get an error when you try to upload your program to the microcontroller, you can download the
“Troubleshooting” document and try to find a solution. The document explains the most common
problems, such as: missed semicolons, missed brackets, misspelled words, and not connecting to the
board.

• If your code uploads, but the Servo does not move, check that your wires are all in the right place. Next,
check that the “setup” section of your program looks exactly like the code written in step 5 of “Time to Write
Some Code”. Sometimes people change the number in “myservo.attach();” , but this sends the
control signal to the wrong pin on the microcontroller.

Are You Ready for Some Challenges?

1. Try to make your continuous Servo spin to the left for 3 seconds and to the right for 1 second.

2. Try to make your continuous Servo spin slow to the left forever.

3. Try to make your standard Servo go to 0° for 1 second, 45° for 1 second, 90° for 1 second, 135° for 1 second,
180° for 1 second, and then back, stopping at each of the above mentioned degrees for 1 second each. For
example, 0°, 45°, 90°, 135°, 180°, 135°, 90°, 45°, 0°, etc.

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may
be contained in this document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

Challenge Solutions:

Challenge 1 Solution:

Challenge 2 Solution:

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may
be contained in this document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

Qualcomm and Thinkabit Lab are trademarks or registered trademarks of Qualcomm Incorporated.

Challenge 3 Solution:

