Qualcomm

LED + Servo
thinkabit lab

What Will You Learn?

Learn to wire and write code to control a servo and an LED at the same time.

Why Should You Learn This?

Now that you know how to use a LED and a servo separately, you can expand on your ideas by learning how to program
both together. While this is more complicated than wiring each of the components separately, it is something that is
possible with a bit of time and a few extra parts.

Here’s What You’ll Need:

Arduino Microcontroller 1 Servo Breadboard

Continuous servo is used in this activity, but you
could also use a standard Servo)

fritzing i

2 Red Wires 2 Black Wires 1 White Wire

1 resistor (100 — 300 ohms) 1LED
i &a—
fritzing

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https:/creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https:/spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

Safety First

Never allow the red and black wires to touch together while they are connected to a powered microcontroller, as that
creates a short circuit. A short circuit can potentially cause the wires and/or the microcontroller to get hot enough to burn
the skin. In addition, in the event of a short circuit, the microcontroller can potentially catch on fire.

Let’s Get Connected

1. Let’s focus on connecting the servo first. Begin by
connecting a red wire from Vin on the microcontroller
to the red (+) wire of the servo.

& +
n "
- -
Bl a

BB B

RS EEEEE
3SR

T

BdEEE

BEEEEEE

-
"
-
"
N
L
"
-
"
B
"
'
"
5
=
"
-
"
5
"
"
=
"
¥
"
B
"
®

RS EEEES NSRS EEEE NS AR E

E]
]
w .
v
-
CH |
N
o
N
8
v
N
E]
E
=
N}
& w
N
N
ER]
5 ®
E]
"
9
v
]
E]
N}
* §
wE

mdEEE P EdEE mEEEE EEEE R

3. To finish hooking up the servo, connect a white wire
from 9 to the white (control) wire of the servo (the wire
in the diagram is yellow, but your wire may be white).

&
n
-
L

BB B

BE RS
BB dE

PR

BB R ERE BB EE AR SRR R
BAEEE

E]
v
W
N
R
E]
5§
o
N
8
v
]
E]
B
=
N]
5§
N
N
ER]
5 ®
E]
" m
5
N
|
w o
v E
+ §
L]

T EEEE mEEEE EwEE R

L RN]

2. Next, connect a black wire from GND to the
black (-) wire of the servo.

r-l! - ERE R Py

saf 2 rise e

i R

et T P

ol 2 e

L il

i b3l L |

il 1 sTrEs fo

L - & B EES an

sl TrEre dui

e rwas he

fritzing
4. Now that the servo is connected, you can focus on
the LED. Connect a red wire from 13 to any row of the
breadboard (row 12 is used below). You will use this

same row to connect your resistor later.

eieieeil S L

i L

R

e

Errstmicy

Eewan el

SErEs feo

& B EES an

e L

fritzing

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https:/creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https:/spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

6. You will also need a resistor to make sure you don’t burn
outyour LED. Connectthe resistor from the row that has

the red wire (row 12 below) to another row on the

breadboard (row 8 is used below).

5. Next, connect a black wire from GND to the

negative rail, or the blue lined column.

P BEES BETEE BREEEF TESHEE BWE LS

FEFRYT EEETE FAPAT WTEETE BB

rEAEFTES B R Y R A EE
FEds i EaE YR TR E N
FEAEAE R PR R E A
FE A E S ES R ETE S
FEFEAFEERFEATR S

P BEEE BE@EE BREEE TESHEE B
FEFTawr AFiTE FEFEF TR dTFE @

rEsEsTRAN S TR T R A @GN
e Er R Y I s
A I I A]
FE AT EEE NS
TR E TP AR R AR

LR T R]
a

EE S ETESEEEETEAEE
LR I S I
TR ETES R ERE TR AW
F RSB EFEFEFEF RN

L R L N] 4
EemEs aEsEE EdEEE@

EE NN NN
e E R R W
] (RN
s wam [ERE RN
TPEFEREF AR RE R

[EEE R RS R R RN

FESETE S BN E R EAEE

* B+ 8 dFEEFrEFE AR
FEsETES EERE TR AW
F R R FEFEFEFEREREN

L R L N] 4
EemEs aEsEE sdEEE@

fritzing

7. Lastly, connect the LED. The long leg (positive) will
go in the same row as the end of the resistor that is not

connected to the red wire (row 8), and the short leg

(negative) will go in the negative rail.

RN

EF R

T LR
F i TR

FAF AT

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https:/creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this

document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https:/spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

Time to Write Some Code

1. Start by opening the Arduino programming language and deleting the text to start with a blank document. This is a good
time to make sure that you’ve selected the right port to connect your board to by choosing the COM that is listed under
Arduino Uno. It may be tempting to just copy and paste the Servo code and LED Blink code into one document, but
combining the two programs directly won’t work. In this activity, you’ll learn how to write the code from start to finish.

File Edie Siwich Tooh Help
siwich_ods o Arcuing Ling
LI
i

2. Whenever you use a servo, you need to include the servo library in your program. If you haven't downloaded the servo
library, go back to the Servo activity to learn how. To add that library to your sketch, go to Sketch -> Include Library ->
Servo in the menu. “#include <Servo.h>" will appear in your sketch. You can also just type this in to add the servo
library.

Upioad Lisng Programmer CixleShifys

Export Compéled Banany Alg=Ciries

Ciptimize for Debugging

[[[hl Show St Foider P

Inchide Lebrary L hignage Libranes L1r] = Shalt =
Add File Ackd P Libracy
AINRYS FICANND D035 10

Ardueng Grovel2C_Usrasonic
DistanceSensos

122 w REMOVE
LEr

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https:/creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https:/spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

3. Next, you need to name your servo, as you did in the “Servo” activity. The example below names the servo “myservo”.
You can hame your servo whatever you want, just be sure to use that name throughout your entire code.

4. You are also going to make a name for your LED. To do this, you need to create a variable that tells you what

pin your LED is connected to. To create a variable, use the line of code “int led=13". In this line of code, “led” is the name
of your variable (it’s good to make this name something easy to understand). 13 is the pin that your

LED is connected to, and “int” is the type of variable that you are creating. “int” is short for integer, which just means that it
will be a number. This is the most common type of variable that you will use.

5. Now that you have named your servo and LED, you’re ready to write the Setup section of your program. Because you are
using 2 components, a servo and an LED, you need to setup both. You’ll set up the servo and the LED the same way that
you did in the “Servo” and “LED Blink” activities, but this time you will put them both in the same program.

Fite Edit Sketch Took Help

LED Sarva FY.25 no

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https:/creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https:/spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

6. Next, you can write the loop function of your program. It may be tempting to copy and paste the code from the “Servo”
and “LED Blink” examples together. If you tried that you would end up with the following:

Although this will work, it will not make the LED and servo do what you want them to do — which is to have the LED blink
and servo move at the same time. The LED will turn on, stay on for a second, then turn off, but because the microcontroller
runs through all the lines of code one at a time before starting over from the top, the light will stay off for 5 seconds (1000 +
2000 + 2000). The same thing happens with the servo. Since you are using a continuous servo, it will start out not moving,
then will spin one direction for 2 seconds and then in the opposite direction for 4 seconds (2000 + 1000 + 1000). This table
may help you see it more clearly:

Full Code What each line of code does What we see when the code runs
ite(led, HIGH); LED turns on for 1 second
1888) ;
ie W}, LED turns off for 5 seconds (will stay off
1 legae) ; until the next loop of code)
; servo spins to the left for 2 seconds
2888)
188 ; servo spins right for 4 seconds (until the
IRBRY 1 servo turns right in the next loop)

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https:/creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https:/spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

If you want the light to blink on and off every second and the servo to change directions every second, you will need to do
both actions (for the LED and the servo) before each delay. It should look like the code below:

File Edit Sketch Tools Help

o e Select Board o

LED Servo FY25.imo

1 #include <Servo.h>

2 Servo myservo,

3 int led = 13:

4

g void setup(){

L myservo.attach(9);

7 pinMode(led, OUTPUT);

8 1}

2

18 void loop(){

11 digitallirite(led, HIGH);
12 myservo.write(8);

13 delay(1668);

14 digitalWrite(led, LOW);
15 myservo.write(18@);

16 delay(1eee);

17 1

Congratulations. You should now have an LED blinking and a servo spinning back and forth in unison. Feel free to change
the delay or make the servo spin slower by changing the value in myservo.write(); (see “Programming a Servo” for more
information).

Tips for Success

* Ifyou’re having issues with your code, review all the lines in the example code to make sure you didn’t miss something
or refer to the “Troubleshooting” document for more help.

» Ifyour LED is not working, be sure that all your connections have been made properly and the LED is plugged in the
right way. If you’ve checked each of these things, then try a different LED.

* Ifyourservo is not working, make sure that all your wires are in the correct pins and that the red, black and white wires
are in the right order on the servo attachment. If the wiring looks correct, you may want to try another servo.

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https:/creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https:/spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

Are You Ready for Some Challenges?

Below are some other combinations of blinking and spinning for you to try as challenge problems. The possible
solutions are posted below, but try doing them yourself first. Remember, code can look different and have the
same effect.

1. Tryto make your LED continue to blink at the same rate (on for 1 second, then off for 1 second) and have your servo
spin only one way (instead of both ways). This will allow you to change the rate of the blinking without changing the
motion of the servo.

2. Try to make your LED Blink fast (with a delay of 100 milliseconds) and your servo spin both ways for 1 second each
direction.

3. Trytoincorporate the LED Fade code with a servo. You may want to start by having the servo only spinning one way
and then try to have it change directions with the rate of the fade.

Challenge Solutions:

Note: For most of these challenges, I’'ve only posted the loop, since the variables and setup are the same. | have also
posted comments, as it’s good practice to write comments with your code, but you do not need to write them in your
code as it doesn’t change what the code does. Remember, comments are for humans.

Challenge 1 Solution:

L]
1
u
=
.-..
i

|
1
A

I
m
T

[
[
I

I

18} 3

[1E8) :

You can always change the delay to be longer or shorter. This will change the rate at which your light blinks, but
because you only told your servo to spin one direction and never changed the direction, it will continue to spin that
direction no matter the value of the delay.

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https:/creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https:/spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

Challenge 2 Solution:

We want to have a longer delay for the servo than the LED, but we can’t assign a separate delay to each part because a
delay makes the entire program wait before it reads the next line. So, the loop in our program should look something like
this:

File Edit Sketch Took Help

LED Sarva_FY25ino

[
L]

7]
18 woid loop(){
11 my servo . Write(a); n to ti pft
123 digitalkrite(led, HIGH};
13 diolay {108 ; o del
14 digitalkrlte(led, LOW);
15 i yilaa); eryn dela .
16 d alirive(led, HIGH)}: turn The LEL
17 dalay{lea);: jalay
18 digltalkrite(led, LOW);
19 i wilea); !
ry digitalbriteled, HIGH);
21 {188 ;
2 albrite!led, LOW); ti 0 ofi
3 o 1iedy
24 italkritelled, HIGH): 1
25 yilaa);]
26 albrite({led, LOW);: ri thi £
27 yilaa); i }
28 alWrite(led, HIGH);
it 1) ; |
1] digitalbrite(led, LW);
31 dalay{108]; i
] myserva. write[188); pi
13 digitalbrice]led, HIGH); turn tl
3d delay{198) fe= Ly
35 digitalbritelled, LOW); turn the LED off
35 delay{ 1849) l frn
37 digitalWrite{led, HIGH)};

dalay{198); |

digl

1] ta “""T'l;]'-"l'-. LW} +ha

=H delay{106€);] i ! AP

a1 -j:ﬁ...l]..i"""-l']r“L HIGH) ; turn the LEI

a2 1L g t

43 , LW} Farh the LED oF
dd : a f

45 digitalirite(led, HIGH); turn t

&5 dalay{1ed); jal;

&7 digitalbrite(led, LOW); turn th

al delay{18a); i

49 digitalkrite(led, HIGH);

58 de lay{iea); y i

=¥ | digitalkrite(led, LW): F =} I Fs.

folay(100): rvo delay - 1008

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https:/creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document s distributed under the Clear BSD license: BSD 3-Clause Clear License (https:/spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

Challenge 3 Solution:

| started with the LED Fade example and then added in the servo code to make the servo spin only one way. Making the
servo change directions is a harder task, but may be easier once you have completed “Servo Sweep Challenge #2”.

File Edit 5Sketch Tools Help

Q e Select Board -

sketch_deci8a.ino

1 #include <Servo.h>

2 Servo myservo,;

3 int led = 11;

4 int brightness = 8;

g int fadefmount = 5;

6

7 void setup() {

3 myservo.attach(9);

9 pinMode(led, OUTPUT);
18 }
11
12 void loop() {
13 myservo.write(@);
14 analoghirite(led, brightness);
15 brightness = brightness + fadefmount;
16 if (brightness == 8 || brightness == 255) {
17 fadefmount = -fadefmount;
18 }
19 delay(38);
20}

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https:/creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https:/spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

Qualcomm and Thinkabit Lab are trademarks or registered trademarks of Qualcomm Incorporated.

