
LED + Servo

What Will You Learn?

Learn to wire and write code to control a servo and an LED at the same time.

Why Should You Learn This?
Now that you know how to use a LED and a servo separately, you can expand on your ideas by learning how to program
both together. While this is more complicated than wiring each of the components separately, it is something that is
possible with a bit of time and a few extra parts.

Here’s What You’ll Need:

Arduino Microcontroller Breadboard

2 Black Wires

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

2 Red Wires

1 Servo
Continuous servo is used in this activity, but you
could also use a standard Servo)

1 White Wire

1 resistor (100 – 300 ohms) 1 LED

Safety First
Never allow the red and black wires to touch together while they are connected to a powered microcontroller, as that
creates a short circuit. A short circuit can potentially cause the wires and/or the microcontroller to get hot enough to burn
the skin. In addition, in the event of a short circuit, the microcontroller can potentially catch on fire.

Let’s Get Connected

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

1. Let’s focus on connecting the servo first. Begin by
connecting a red wire from Vin on the microcontroller
to the red (+) wire of the servo.

3. To finish hooking up the servo, connect a white wire
from 9 to the white (control) wire of the servo (the wire
in the diagram is yellow, but your wire may be white).

2. Next, connect a black wire from GND to the
black (-) wire of the servo.

4. Now that the servo is connected, you can focus on
the LED. Connect a red wire from 13 to any row of the
breadboard (row 12 is used below). You will use this
same row to connect your resistor later.

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

5. Next, connect a black wire from GND to the
negative rail, or the blue lined column.

7. Lastly, connect the LED. The long leg (positive) will
go in the same row as the end of the resistor that is not
connected to the red wire (row 8), and the short leg
(negative) will go in the negative rail.

6. You will also need a resistor to make sure you don’t burn
out your LED. Connect the resistor from the row that has
the red wire (row 12 below) to another row on the
breadboard (row 8 is used below).

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

Time to Write Some Code
1. Start by opening the Arduino programming language and deleting the text to start with a blank document. This is a good
time to make sure that you’ve selected the right port to connect your board to by choosing the COM that is listed under
Arduino Uno. It may be tempting to just copy and paste the Servo code and LED Blink code into one document, but
combining the two programs directly won’t work. In this activity, you’ll learn how to write the code from start to finish.

2. Whenever you use a servo, you need to include the servo library in your program. If you haven't downloaded the servo
library, go back to the Servo activity to learn how. To add that library to your sketch, go to Sketch -> Include Library ->
Servo in the menu. “#include <Servo.h>" will appear in your sketch. You can also just type this in to add the servo
library.

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

3. Next, you need to name your servo, as you did in the “Servo” activity. The example below names the servo “myservo”.
You can name your servo whatever you want, just be sure to use that name throughout your entire code.

4. You are also going to make a name for your LED. To do this, you need to create a variable that tells you what
pin your LED is connected to. To create a variable, use the line of code “int led=13”. In this line of code, “led” is the name
of your variable (it’s good to make this name something easy to understand). 13 is the pin that your
LED is connected to, and “int” is the type of variable that you are creating. “int” is short for integer, which just means that it
will be a number. This is the most common type of variable that you will use.

5. Now that you have named your servo and LED, you’re ready to write the Setup section of your program. Because you are
using 2 components, a servo and an LED, you need to setup both. You’ll set up the servo and the LED the same way that
you did in the “Servo” and “LED Blink” activities, but this time you will put them both in the same program.

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

6. Next, you can write the loop function of your program. It may be tempting to copy and paste the code from the “Servo”
and “LED Blink” examples together. If you tried that you would end up with the following:

Although this will work, it will not make the LED and servo do what you want them to do – which is to have the LED blink
and servo move at the same time. The LED will turn on, stay on for a second, then turn off, but because the microcontroller
runs through all the lines of code one at a time before starting over from the top, the light will stay off for 5 seconds (1000 +
2000 + 2000). The same thing happens with the servo. Since you are using a continuous servo, it will start out not moving,
then will spin one direction for 2 seconds and then in the opposite direction for 4 seconds (2000 + 1000 + 1000). This table
may help you see it more clearly:

Full Code What each line of code does What we see when the code runs

LED turns on for 1 second

LED turns off for 5 seconds (will stay off
until the next loop of code)

servo spins to the left for 2 seconds

servo spins right for 4 seconds (until the
servo turns right in the next loop)

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

If you want the light to blink on and off every second and the servo to change directions every second, you will need to do
both actions (for the LED and the servo) before each delay. It should look like the code below:

Congratulations. You should now have an LED blinking and a servo spinning back and forth in unison. Feel free to change
the delay or make the servo spin slower by changing the value in myservo.write(); (see “Programming a Servo” for more
information).

Tips for Success

• If you’re having issues with your code, review all the lines in the example code to make sure you didn’t miss something
or refer to the “Troubleshooting” document for more help.

• If your LED is not working, be sure that all your connections have been made properly and the LED is plugged in the
right way. If you’ve checked each of these things, then try a different LED.

• If your servo is not working, make sure that all your wires are in the correct pins and that the red, black and white wires
are in the right order on the servo attachment. If the wiring looks correct, you may want to try another servo.

Are You Ready for Some Challenges?
Below are some other combinations of blinking and spinning for you to try as challenge problems. The possible
solutions are posted below, but try doing them yourself first. Remember, code can look different and have the
same effect.

1. Try to make your LED continue to blink at the same rate (on for 1 second, then off for 1 second) and have your servo
spin only one way (instead of both ways). This will allow you to change the rate of the blinking without changing the
motion of the servo.

2. Try to make your LED Blink fast (with a delay of 100 milliseconds) and your servo spin both ways for 1 second each
direction.

3. Try to incorporate the LED Fade code with a servo. You may want to start by having the servo only spinning one way
and then try to have it change directions with the rate of the fade.

Challenge Solutions:
Note: For most of these challenges, I’ve only posted the loop, since the variables and setup are the same. I have also
posted comments, as it’s good practice to write comments with your code, but you do not need to write them in your
code as it doesn’t change what the code does. Remember, comments are for humans.

Challenge 1 Solution:

You can always change the delay to be longer or shorter. This will change the rate at which your light blinks, but
because you only told your servo to spin one direction and never changed the direction, it will continue to spin that
direction no matter the value of the delay.

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

Challenge 2 Solution:

We want to have a longer delay for the servo than the LED, but we can’t assign a separate delay to each part because a
delay makes the entire program wait before it reads the next line. So, the loop in our program should look something like
this:

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

Qualcomm and Thinkabit Lab are trademarks or registered trademarks of Qualcomm Incorporated.

Challenge 3 Solution:

I started with the LED Fade example and then added in the servo code to make the servo spin only one way. Making the
servo change directions is a harder task, but may be easier once you have completed “Servo Sweep Challenge #2”.

