
LED Blink

What Will You Learn?
Learn to wire a circuit, upload code to a microcontroller to make an LED Blink, and modify that code to change how it
blinks.

Why Should You Learn This?
Blink is one of Arduino’s basic example programs. It is a great way to begin to understand the programming language. You
should complete the “LED circuit” activity before beginning to understand how an LED circuit works. During this activity,
you will upload an LED Blink example program and then watch what happens when you change the code.

Here’s What You’ll Need:

Arduino Microcontroller BreadboardLED

Notice that one of the wires of
the LED is slightly longer than
the other, the long leg is the
positive side and the short leg
is the negative side. This will be
important when you plug in
your LED.

Red Wire

Black Wire

Resistor

Use a range of 100 – 400
ohms

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

A to B USB Cable

You will power the
Arduino from a
computer through
the USB cord.

Safety First
Never allow the red and black wires to touch together while they are connected to a powered microcontroller, as that
creates a short circuit. A short circuit can potentially cause the wires and/or the Arduino board to get hot enough to burn
the skin. In addition, in the event of a short circuit the Arduino board can potentially catch on fire.

Let’s Get Connected

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

1. Start by connecting the black wire
from GND to the negative rail of the
breadboard.

3. Let’s add the resistor. Use it to connect
row 16 (where the red wire is) to any
other row on the breadboard (shown
using row 12).

2. Next, connect the red wire from pin 13 to
any row on the breadboard (shown using
row 16).

4. Lastly, place the LED. The long leg
(positive) will go in the row with the
resistor (row 12) and the short leg
(negative) will go in the negative rail.

Time to Upload Code
You can think of sending code to the microcontroller like sending a text message. You open a texting app
(in this case you’ll use the Arduino software), choose someone to send the message to (select the correct communication
portal, or COM#, for the Arduino board), compose a message (write some code), then hit send (upload the program). This
activity will walk you through each of these steps.

1. First, you need to open the app that you’re going to use to send out your “text.” We’ll use the Arduino programming
software on our computer.

Note that the image above uses Windows to run Arduino. Other operating systems may have instructions that look slightly
different, but the concept is the same.

2. Next, you need to identify in your phone who you are texting. In the program, this means selecting the correct
communication port by going to the drop down menu and choosing the port that says Arduino Uno above it. If the board
name does not appear, please choose the port with the highest COM#. Please ensure your microcontroller is plugged into
the computer prior to choosing the communication port.

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

3. Next, you need to type in your message. In this activity, you are going to use one of Arduino’s built in example programs
for your message. Please open the “Blink” example code by going to File - Examples - 01. Basics - Blink.

4. Finally, you need to “send” your text message. In this programming language, this is called “uploading”. It is done by
clicking the arrow button in the top left corner of your screen. Once this code uploads, your LED should begin to blink.

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

5. Let’s look through each section of the code so that you understand what is happening. The first part of
the program is grey, which means that it is made up of “comments.” These comments do not get uploaded
to the microcontroller, they are just for humans to read. You can use them when you want to share your
code with someone else or if you want to remember what certain parts of the code do.

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

6. The first bit of real code is “void setup(){”. This sets up your board. The code we write within the setup function lets it
know what pins you are using and how each pin will act. There is one line of code in this setup,
“pinMode(LED_BUILTIN, OUTPUT);”, which programs the microcontroller to set pin 13 (our pin that is specifically built
to power an LED and is referred to as our LED_BUILTIN) to output mode. Output mode
means it can send power. As a result, your LED will be plugged into pin 13.

7. The next section of this code is “void loop()". This is the action part of the code and this section will repeat forever
until you disconnect the power, reset the board, or if you coded for it to leave the loop. There are 4 lines of code in this
loop and they will repeat, line 1, line 2, line 3, line 4, line 1, line 2, line 3, line 4, line 1, etc.

a. The first line of code, “digitalWrite(LED_BUILTIN, HIGH);” sets pin 13 (our LED_BUILTIN) to a high voltage and
turns the LED on.

b. The next line, “delay(1000);” programs the microcontroller to wait for 1000 milliseconds (or 1 second) before
reading the next line of code. Since you haven’t set the LED to off yet, the LED will simply stay on.

c. The next line of code, “digitalWrite(LED_BUILTIN, LOW);” will set pin 13 to low voltage, making the LED turn
off.

d. Lastly, “delay(1000);” programs the microcontroller to wait for 1 second again before reading the next line of
code. So, the LED turns on, waits for 1 second, then turns off and waits for 1 second. This makes the light blink.

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

8. Now that you have a basic understanding of how this code works, how could you change the code to make the light
blink faster?

You can change both delays to a smaller value to make the light blink faster. Don’t forget to upload once you have
changed the code.

Notice that the comments still read “wait for a second,” but remember comments don’t affect the code. It is good
practice to have comments reflect the code, so you may choose to modify them to be correct.

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

Tips for Success
• My light is not blinking: Be sure that all your wires are plugged into the right places on the breadboard and

microcontroller (check the diagram in step 4 of “Let’s Get Connected”). Pin 13 can be tricky to find sometimes
and you may be one off to the left or to the right. Try moving the red wire around to find 13.

• Double check to see if your LED is plugged in the right way. The LED won’t work if it’s plugged in backwards, so try
flipping the direction.

• If you’re sure the wire is in pin 13 and it still is not blinking, make sure you uploaded your code to your Arduino. At
the bottom of the screen it should read “done uploading.” If not, try uploading again.

• When I upload, I get an error. Make sure you are connected to the correct Port and that the code is the original
example.

Are You Ready for Some Challenges?
1. Did you know that all the lights in the room you’re currently in are blinking? Your eyes just aren’t fast enough to see the

blinking. This is how flat screen TV’s and smart phone screens work, but don’t believe everything you read! Prove to
yourself that you can make the LED blink so fast that you can’t see it blink anymore. Make sure both delays in your
program are the same for this challenge.

2. Now that you know that a blinking light could appear solid, try to find the threshold value of visible blinking. In other
words, try to find the largest value that you can put into both delays and you can’t see the light blink, but if you add 1 to
that value you would see it flicker. Hint: it’s greater than 1 and less than 50.

3. Make your LED Blink on and off for random amounts of time for the delay. “Random” is a function in Arduino that will
select a random value within a given range. So if you write “random(0,10)” inside the parentheses of “delay()”, it will
pick a random number between 0 and 10. For this challenge, it is recommended to use a range of 20 to 1000, but you
can always try different values as well.

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

Qualcomm and Thinkabit Lab are trademarks or registered trademarks of Qualcomm Incorporated.

Challenge Solutions

1. Any value less than 10 will work for this challenge. For example:

2. The threshold is usually at 10 (like the example above), sometimes it is 9, 11, or 12 because there is slight
variability in either the color of the light, the value of the resistor, or maybe the human.

3. The random function goes inside of the delay.

	Blank Page

