
Multiple LEDs

What Will You Learn?

Learn to connect and write code to control multiple LEDs.

Why Should You Learn This?
If you thought playing with 1 LED was fun, just wait until you get to play with multiple LEDs! This lesson will walk you
through how to wire 4 LEDs and write code to make them behave independently.

Here’s What You’ll Need:

Arduino Microcontroller

1 Black Wire

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

Breadboard

4 Red Wires

4 LEDs (they can be different colors)

4 resistors (100 – 300 ohms)

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

Safety First
Never allow the red and black wires to touch together while they are connected to a powered Arduino board, as that
creates a short circuit. A short circuit can potentially cause the wires and/or the Arduino board to get hot enough to burn
the skin. In addition, in the event of a short circuit the Arduino board can potentially catch on fire.

Let’s Get Connected

1. Start by connecting the black
wire from GND to the negative rail,
the blue column, of the
breadboard. This makes the entire
column negative.

2. Next, start placing LEDs.
Start with one LED and place
the short leg in the negative
rail and the long leg in 5a.

3. With the next LED, place the
short leg in the negative rail and
the long leg in 10a.

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

4. Next, place another LED with
the short leg in the negative rail
and the long in 15a.

5. Last LED, place the short leg
in the negative rail and the long
leg in 20a.

6. Now place the resistors. Start
by connecting one resistor from
row 5(a-e) across the center
aisle to the other row 5 (f-j).

7. Connect the next resistor in
row 10 (a-e) across the center
aisle to the other row 10 (f-j).

8. Connect the next resistor
the same way in row 15.

9. Connect the last resistor
the same way in row 20.

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

10. Now place the red wires. These will all connect to
different pins on the Arduino board so that we can control
each LED individually. Start by connecting a red wire from pin
8 on the Arduino to row 5 where only the resistor is (not where
the LED and resistor are).

11. Connect a red wire from pin 9 to row 10 where
just the resistor is.

12. Connect a red wire from pin 10 to row 15 where just
the resistor is.

13. Lastly, connect your final red wire from pin 11 to
row 20 where just the resistor is.

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

Time to Write Some Code
1. Start by connecting the microcontroller to the computer via the USB cable. Open a new sketch and delete all of the text.
Also, make sure that you are connected to the correct port by selecting your board and COM.

2. The first part of the program is where we declare our variables. In this activity, you will have 4 LEDs (we’ll
call them “led1”, “led2”, “led3”, and “led4”, but if you are using different colors you could call them by their color
name) and they are connected to pins 8, 9, 10, and 11, so the first part of your code should look like
this:

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

3. Now, you can write the setup function, where you will set up all 4 of these pins as an “OUTPUT” to control your LEDs.

4. Next, write the loop function. The following code will cause all 4 LEDs to turn on at the same time, stay on for one
second, and then turn off at the same time and stay off for one second.

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

5. Upload your code and your LEDs should all blink together.

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

6. Now, change your code to make the LEDs blink in a row. This means that LED 1 will turn on and then when it turns off,
LED 2 will turn on and so forth. The code shown below uses a delay of 500, or half a second, but you could use a value that
is larger or smaller if you prefer. Don’t forget to upload your code!

Note: The first line of the loop programs the Arduino to turn LED 4 off. While this doesn’t make much sense at first (since it
wasn’t on to begin with) if you look at the end of the loop, you will notice that LED 4 is HIGH, or on. If you didn’t include the
first line of the loop that turns off LED 4, it would stay on after it ran through the loop once.

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

Tips for Success
• Common mistakes that cause upload errors include forgetting the semicolon at the end of each line or spelling

something wrong.

• Check that you are connected to the right port by going to Tools, and then Port. This was done in Step 1 of writing the
code, but if you saved your code and tried to upload another day, it may not be connected.

• If your code is uploaded to your microcontroller, but your LEDs are not reacting, check the wiring. It may be easiest to
pull out everything attached to your breadboard and start over. LEDs can burn out so you may need to test your LEDs.

Are You Ready for Some Challenges?
1. Try to make the LEDs blink in sequence like the code from step 6 (the next LED turns on when the current LED turns

off), but this time blink down (1,2,3,4) and then back (4,3,2,1) and repeat.

2. Try to make the LEDs turn on, and stay on, as each additional LED is turned on and once all four LEDs are on, all the
LEDs turn off and the pattern starts over (1 LED on, 2 LEDs on, 3 LEDs on, 4 LEDs on, 0 LEDs on).

3. Try to program your LEDs to blink in time with a song. You may want to start with something simple like “Twinkle,
Twinkle Little Star.”

4. Using 3 LEDs (one green, one yellow, one red), try to make a stop light such that the green LED stays on for a long
amount of time, then the yellow LED turns on for a very short amount of time, and then the red LED turns on for a long
amount of time. Try to make it realistic like a traffic light.

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

Challenge Solutions:

Challenge 1 Solution:

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

Challenge 2 Solution:

Challenge 3 Solution:

This code will make 4 LEDs blink to the tune of “Twinkle, Twinkle Little Star.”

This document is distributed under the CC-BY-SA-4.0 license: Creative Commons Attribution ShareAlike 4.0 License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). All code that may be contained in this
document is distributed under the Clear BSD license: BSD 3-Clause Clear License (https://spdx.org/licenses/BSD-3-Clause-Clear.html). All circuit images created with Fritzing.

Challenge 4 Solution:

	Blank Page

